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Abstract
As part of the shared task of GermEval
2018 we developed a system that is able to
detect offensive speech in German tweets.
To increase the size of the existing training
set we made an application for gathering
trending tweets in Germany. This applica-
tion also assists in manual annotation of
those tweets. The main part of the train-
ing data consists of the set provided by the
organizers of the shared task. We imple-
ment three different models. The first one
follows the n-gram approach. The second
model utilizes word vectors to create word
clusters which contributes to a new array of
features. Our last model is a composition
of a recurrent and a convolutional neural
network. We evaluate our approaches by
splitting the given data into train, validation
and test sets. The final evaluation is done
by the organizers of the task who compare
our predicted results with the unpublished
ground truth.

1 Introduction

According to Domo (2018), in June 2018, Twitter
users generated 473,400 tweets per minute. Due
to this enormous amount of data it is reasonable to
assume that many offensive micro-posts are pub-
lished on a daily basis. The goal of the shared task
of IGGSA (2018), which we participate in, is to
find and evaluate approaches for classifying those
tweets. We contribute to the coarse task which con-
sists of the binary classification problem whether
a tweet is considered offensive or not. The second
task includes a fine-grained differentiation in the
four classes: profanity, insult, abuse and other.
An important task in social media and natural lan-
guage processing is to detect offensive speech and

profanity. The concrete challenge of this assign-
ment is that most papers discuss this topic for En-
glish language and regard semantic and syntactic
differences of other languages. In addition, only
a limited amount of data is publicly available for
examples in German. In this paper we try to over-
come this impediment by extracting trending Ger-
man tweets over a time period of three months. We
annotated part of this data and combined these with
the provided training data of the shared task to train
our three models. Our collected data is publicly
available in our GitHub repository1.
Our paper is divided as follows. First we give a
short overview of work done in the field of offen-
sive language detection as well as the analysis of
German tweets. The next section describes the
data we have used and acquired. In section 4, we
describe our three approaches and evaluate their
performance in section 5. Lastly, we conclude our
results and describe possible future work in this
field of research.

2 Related Work

Nobata et al. (2016) describe an approach to detect
abusive language in English comments of ‘Yahoo!
Finance and News’. They combine lexical features
like n-gram, as well as linguistic and syntactic fea-
tures with distributional semantics and evaluate
their data using four datasets. The resulting f1-
score on the Yahoo comments totals 83.6%. To
compare the approach to other models they also
predicted on the ‘WWW2015’ dataset were they
reached an f1-score of 78.3%.
In Razavi et al. (2010), two data sets are used: log
files of the ‘Natural Semantic Module’ that contain
questions of users and ‘Usenet newsgroup’ mes-
sages that have already been annotated. The two

1https://github.com/upInf/germeval2018



data sets are combined to get short sentences with
abusive language as well as long sentences with
sarcasm and irony. They used a three-level classi-
fication system and created a dictionary of flame
patterns containing weights from one to five. In
the first level, they selected the most discriminative
features using a Complement Naive Bayes clas-
sifier. The result of this phase was subsequently
analyzed using a Multinomial Updateable Naive
Bayes classifier. The last step utilizes the Deci-
sionTable/Naive Bayes hybrid classifier. Their com-
posite system reached an accuracy of 96.72% on
the test set.
Chen et al. (2012) introduced a framework called
‘Lexical Syntactic Feature’ that combines the offen-
siveness rating of a word and its context. The offen-
siveness rating is determined by two lexicons. The
context is derived by parsing sentences into depen-
dency sets. To get a rating for the whole sentence,
these features are combined linearly. This approach
is compared to standard text mining approaches
like n-grams, bag-of-words and an appraisal ap-
proach using YouTube comments. They conclude
that their self-defined framework performs better
than the compared baseline approaches.
Xiang et al. (2012) describe a method to detect of-
fensive English tweets using topical features. Due
to the colloquial fashion of tweets, they apply a self
designed preprocessing algorithm. To annotate a
topic for each tweet, they create a bootstrapping
algorithm. The classification is done with the La-
tent Dirichlet Allocation described in Blei, Ng, and
Jordan (2003). In addition, they use a keyword
matching technique assigning a binary indicator
whether at least one word is offensive.
Ross et al. (2017) propose a method for annotating
German tweets concerning the European refugee
crisis. They aim to measure the reliability of given
ratings and observe a very low agreement. Tweets
were processed by three pairs of annotators. The
data set is divided into six equal parts, so the pairs
could be rotated after each step. The first annotator
is asked to decide whether the tweet is offensive or
not. The second one additionally provides a rating
on a 6-point Likert scale from one (not offensive
at all) to six (very offensive). They conclude that
offensive language detection should be considered
a regression problem rather than a binary classifi-
cation.
In the work of Davidson et al. (2017) an approach
to classifying English text into three different cate-

gories is presented. They distinguish between hate
speech, offensiveness and other texts. Based on a
hate speech lexicon generated from user ratings, a
Twitter corpus of 25,000 tweets has been compiled
and manually labeled. Zhou, Sun, Liu, and F. C. M.
Lau (2015) proposed a combination of a recurrent
and a convolutional neural network for sentence
representation and text classification. The convo-
lutional layer extracts n-gram features that are fed
forward towards a Long Short-Term Memory to
capture long term dependencies. For evaluation
they used the Stanford Sentiment Treebank to clas-
sify movie reviews. In the binary classification task
they accomplished an accuracy of 87.8% and for
the fine-grained five-class classification 49.2%.

3 Corpus

Our training corpus is composed of different
sources.

3.1 Data Acquisition
The initial training data is provided by the organiz-
ers of the shared task. We initially started with a
set of approximately 5,000 German tweets labeled
either offensive or other. In order to increase the
size of our training data, we acquired additional
tweets and labeled them manually.
Compiling our own data set has several advantages.
Having a broader spectrum of learning data could
lead to improved results and finer tuned models.
As stated by Ross et al. (2017), the agreement on
whether a tweet is perceived as offensive or not
can depend on personal opinions. Additionally, the
empirical analysis of the agreement between two or
more annotators can be used to evaluate the validity
of the trained model. A data set labeled by only
one person may tend to reflect their personal mind-
set, since for example tweets can be ambiguous or
opinions can diverge.

Gathering tweets More than 750,000 tweets
were gathered during a time interval of three
months, to collect a large enough spectrum of cur-
rent trends and topics. Therefore, tweets of the
top 50 German Twitter trends were fetched every
15 minutes, amounting to an average of 11,000
tweets per day. The data was stored in a mysql
database. Duplicates are avoided by a unique index
constraint on the text column. In contrast to the
training data we anonymized usernames. There-
fore, any occurence of a tagged username is re-
placed by @name. All hyperlinks in posts were



Figure 1: Distribution of offensive tweets per data set

shortened to http://. Hence it is recognizable that
a link is posted, but the content of the link is not
evaluated.

Annotating tweets A supplementary goal is to
calculate the agreement between multiple annota-
tors as illustrated by Ross et al. (2017). Therefore, a
database relation for multiple ratings was installed.
To assign values of offensiveness to the tweets
stored in the database, an annotation client was de-
veloped. This software can be used in two different
modes: the first one is used to annotate new tweets
and hereby extend the Twitter corpus. As at least
two annotations for one tweet are needed to calcu-
late an agreement score, the second mode of the
program displays tweets that have already been an-
notated by exactly one person. In total, about 4,000
tweets were annotated containing about 1,000 of-
fensive tweets.

3.2 Data Composition

In the following sections three different data sets
are used:

GermEval Training Tweets
This data set was provided by the organizers
of the shared task. It contains about 5,000
tweets that are divided into offensive and non
offensive. Subsequently, this data set is abbre-
viated by GETT.

Self-labeled Tweets
The data collected using the procedure as de-
scribed in section 3.1 Data Acquisition was
combined with GETT. A tweet is marked as
offensive if at least one annotator labeled it
that way. We refer to this data set in the fol-
lowing by SLT

Tweets by Davidson
For comparison we used the tweets provided
by Davidson et al. (2017) 2. These are about

25,000 English tweets divided in 19,200 offen-
sive, 1,500 hatespeech and 4,200 other tweets.
For our binary classification task, we merged
the classes offensive and hatespeech into one
class. This set is from now on abbreviated as
TD.

Our data sets were split into training (80%), valida-
tion (10%), and test (10%) set respectively.
Figure 1 shows the arrangement of offensive vs.
non-offensive tweets. In both training sets, the
amount of non-offensive tweets exceeds the offen-
sive ones. Caused by this imbalanced distribution,
the accuracy measure would be ambiguous, so we
choose the harmonic mean of precision and recall,
known as f1-score.

4 System

We implemented three different models. Therefore,
we use the modules NLTK from Loper and Bird
(2002), scikit-learn from Pedregosa et al. (2011),
Keras from Chollet et al. (2015) and Gensim from
Řehůřek and Sojka (2010).

4.1 N-gram Model

We choose the n-gram model as our baseline ap-
proach, because this basic approach is able to reach
good results in text classification tasks. This en-
ables us to evaluate the performance of our other
models.
We start by tokenizing and stemming all words in a
tweet. Furthermore, we remove the # sign from all
hashtags, because these hashtags used in the con-
text of a sentence can often be replaced by the topic-
keyword alone, for example “Schon merkwürdig,
dass #Oezil von der Politik des #Erdogan-Fotos

2https://github.com/t-davidson/
hate-speech-and-offensive-language



Figure 2: 30 word clusters with k-means

nichts wissen will [...]”. In the next step, we re-
move all usernames and hyperlinks.
We use the TF-IDF-Vectorizer from sklearn to
retrieve our word counts weighted by the term
frequency-inverse document frequency of all uni-,
bi- and trigrams.
For this model we compare several classifiers, a
Support Vector Machine (SVM), Naive Bayes clas-
sifier, and a Decision Tree. We implement these
models with sklearn, namely the classes SGDClas-
sifier, BernoulliNB, DecisionTreeClassifier. Our
SVM reaches the highest f1-score. We conduct a
grid search on the validation set to fine tune our
hyper-parameters and obtain the best estimator.
The submission file is named upInf coarse 1.txt.

4.2 Word Clustering

Mikolov et al. (2013) proposed a vector space
model for word embeddings, such that words that
share a similar context in a corpus have related
vectors. Our second approach tries to use the
advantage of these word vectors for binary clas-
sification of tweets. To create those vectors, a
word2vec model based on the SLT vocabulary has
been trained. Since the TD data set is in English, we
acquired an additional corpus of 1.6 million tweets
provided by Go, Bhayani, and Huang (2009) to
train an English word2vec embedding. Best results
were observed without stemming and stop word
removal. We choose a 100-dimensional vector and
a window size of five tokens. Training the model

with 100 epochs turned out to be sufficient.
The goal of this approach is to add some seman-
tic context to the model. The word vectors were
clustered with a k-means algorithm. Baker and Mc-
Callum (1998) state that the clustering of words
can provide several advantages. First of all, it can
generate semantic word groups. Furthermore, clus-
tering can lead to higher classification accuracy.
One drawback of n-gram models is the curse of di-
mensionality. The semantic word clustering offers
a highly reduced dimensional representation.
A sample implementation has been done by Duarte
(2018). After a parameter search, we set the num-
ber of clusters to 1,000. After the computation
of our clusters, every word is related to a nearest
centroid. Thus a 1,000 dimensional vector for ev-
ery sentence can be determined. Every dimension
represents the accumulated count of words in the
cluster for one tweet. To increase the feature spec-
trum, a standard TF-IDF vector is attached. After-
wards, we reduce the dimensionality by applying a
SelectFromModel feature selection. Subsequently,
several classifiers are tested with cross-validation
and are evaluated against our test sets. The best
results are reached by the Naive Bayes classifier.
In figure 2 a visualization of this approach is pre-
sented. It shows a simple 2D representation of the
50,000 most frequent words of our own Twitter
corpus.
The prediction results can be found in up-
Inf coarse 2.txt.



4.3 C-LSTM

One of the main disadvantages of bag-of-words
models is the information loss regarding the word
order. Neural network models have shown to
perform remarkable results in language modeling
tasks. Recurrent neural networks (RNN) are partic-
ularly well-suited to model word sequences, since
they are able to capture long-term dependencies
as described by Sundermeyer, Schlüter, and Ney
(2012). Hochreiter and Schmidhuber (1997) devel-
oped long short-term memory (LSTM) networks
to overcome the vanishing and exploding gradient
problem of RNN.
Convolutional neural networks (CNN), first de-
scribed by Krizhevsky, Sutskever, and Hinton
(2012), are another class of neural networks and
generally used for object recognition and image
classification. CNN can be utilized for sentence
modeling by extracting n-gram features through
convolutional filters. Similar to RNN, CNN can
learn short and long-range relations through pool-
ing operations.
Zhou, Sun, Liu, and F. Lau (2015) suggest a unified
model of CNN and LSTM, called C-LSTM for sen-
tence representation and text classification, where
the CNN is used to extract n-gram features, which
are fed towards an LSTM to capture the sentence
semantics.
This model is the foundation of our third approach.
The C-LSTM is implemented with keras using the
tensorflow backend. Preprocessing is performed
similar to the other implemented models, except we
skip stemming and split hashtags into two tokens,
the actual hashtag sign (#) and the following key-
word. We used our own generated 100-dimensional
Word2Vec model to initialize the embedding layer,
but limit our vocabulary size to the 20,000 most
frequent tokens. Unknown words are initialized
using a random word embedding with values from
the uniform distribution [-0.25, 0.25]. The word
vectors are then fine-tuned during the training of
our model. To fix the input length, each sentence
with a length less than 30 tokens is padded with the
representation of an empty string. Sentences which
exceed this limit are cut off at the end.
The convolution layer of our model consists of
five concatenated one-dimensional convolution lay-
ers. Each layer encloses a filter vector of different
length, sliding over the embedding vectors of a to-
ken sequence. The length n of these vectors range
between one to five tokens and allows the detection

of n-gram features. ReLu is chosen as the nonlin-
ear activation function. The generated feature maps
are then concatenated and fed forward towards the
LSTM layer.
The LSTM, which is used in this layer, uses the
standard architecture, first described by Hochreiter
and Schmidhuber (1997). The memory dimension
of the LSTM layer is set to 100.
As a consequence of the binary classification task,
our output layer consists of a single neuron and we
choose the sigmoid function as activation function.
A value greater or equal than 0.5 indicates the label
‘OFFENSE’, whereas a lower value indicates the
label ‘OTHER’. Furthermore, we implement two
dropout layers with a dropout rate of 0.3 for regular-
ization and to prevent over-fitting. These layers are
applied respectively before the convolution layer
and after the LSTM layer.
Stochastic gradient descent (SGD) with the op-
timizer Adam, as described by Kingma and Ba
(2014), is used to update the model parameters.
Cross-entropy loss is chosen to measure the perfor-
mance of our model.
A model description can be found in figure 4 in the
appendix.
The results of this approach are submitted as up-
Inf coarse 3.txt.

5 Results

Our systems are named according to section 4.
The final results on our test sets are displayed in
figure 3.

5.1 Agreement

As mentioned in section 3.1, about 700 of our
tweets were annotated by at least two annotators
so we are able to calculate an agreement score.
Since we want to compare our results with Ross
et al. (2017), we calculate the Krippendorff
α (Krippendorff, 2004). “This] is a reliability
coefficient developed to measure the agreement
among observers, coders, judges, raters [...]”
(Krippendorff, 2008). Our annotations show a
total agreement accuracy of 84% and a Krippen-
dorff α of 78%. In contrast, Ross et al. (2017)
reach an α of 38% at the annotations of the experts.



Figure 3: Results of different systems per data set

5.2 N-gram Model

By tuning our n-gram model we are able to achieve
an accuracy of 77.84% at an f1-score of 63.49%
with the SGDClassifier on the GETT data set. For
the SLT data set, this model performs worse with
the SGDClassifier and just reaches 59.69% f1-
score and an accuracy of 67.73%. For the TD
data set, the best prediction was achieved using
the AdaBoostClassifier with a Decision Tree as
base estimator. The f1-score reaches 96.89% and
the accuracy 94.91%.

5.3 Word Clustering

A final f1-score of 65.55% with an accuracy of
75.44% can be reached with a BernoulliNB on the
GETT data set. As in the first approach the system
performs worse on the SLT data set, where an f1-
score using the Naive Bayes classifier of 61.94%
is accomplished. A prediction f1-score of 97.11%
with the AdaBoostClassifier is the optimal result
that can be achieved on the TD data set.

5.4 C-LSTM

The C-LSTM achieves an accuracy of 74.85% and
an f1-score of 56.25% on the GETT data set. On
the SLT data set, this model reaches an accuracy
of 74.83% and an f1-score of 60.14%. Similar to
our other models, the C-LSTM performs well on
the TD data set with an accuracy of 95.00% and an
f1-score of 96.99%.

6 Discussion

Agreement Our high Krippendorff α can be ex-
plained with our search queries. We tried to avoid
specific keywords, which could by itself indicate
profanity or offensive language. Despite our effort

to search for controversial topics, the majority of
tweets can be considered as objectively not offen-
sive. Nevertheless, we can agree with the observa-
tion of Ross et al. (2017) that a binary classification
for offensiveness is a difficult and subjective task.

Classification Task All of our models perform
similarly and produce comparable results. For the
GETT data set, the n-gram model achieved the best
scores. It has become evident that our initial goal to
improve the classification accuracy by increasing
the size of our training set could not be reached.
The first reason for this could be the differing an-
notations caused by the missing ground truth in the
nature of this task. The offensiveness of a tweet is a
subjective measure that is difficult to quantify. We
tried to annotate according to the provided guide-
lines, but still observed inconsistencies. Another
explanation could be certain characteristics of the
German language especially composite words in
which words are combined to generate new ones.
In our models, a unique word in a vocabulary is
embedded by one specific token. Hence certain
composite words which could be considered as
offensive, like for example “Hurensohnbande”, oc-
cur less frequently in our training data and therefore
affect our results.
Furthermore, it can be difficult to grasp the full con-
text of a random tweet. Tweets are often responses
or comments on other tweets. With only fragments
of a conversation, the true intention of the author is
difficult to determine.

7 Conclusion

Using more than 700,000 tweets crawled from the
top 50 Twitter trends for over three months and
combining them with the training set of GermEval



2018, three different models were trained to de-
tect offensive speech. Regarding the labeling of
our own Twitter corpus, we observe an agreement
score of 77.5% measured using Krippendorff α .
The baseline classification approach consists off
an n-gram model using Tfidf-Vectorization and an
SVM. Subsequently, we combined this approach
with a K-Means Word Clustering of a self-trained
word2vec model. The third system was designed
using a C-LSTM.
On the GETT data set, these models reach an f1-
score between 55% and 65%. Most models could
not be improved by extending the data set. The
effectiveness of the classifier is likely to depend on
the quality of annotations and due to the subjec-
tive nature of this task, it is difficult to maintain a
consistent set of training data.

8 Future Work

An issue concerning tweet data is the lack of con-
text. Most tweets refer to external resources like
articles, images or videos. This information is not
available to the classifiers. Tweet meta data like
whether the tweet is a response to another tweet
or if the user was offensive before could represent
useful context and affect the decision-making pro-
cess. Therefore, including this type of information
in the training data could be useful.
Another improvement of our models, which is sug-
gested by Davidson et al. (2017), might be to in-
clude part-of-speech (POS) tagging. Since no suf-
ficient POS-tagger is applicable for German lan-
guage, it is recommended to train a separate classi-
fier. A possible implementation was published by
Konrad (2016).
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